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Logarithmic density relaxation in compaction of granular materials

Gongwen Peng* and Takao Ohta†

Department of Physics, Ochanomizu University, Tokyo 112, Japan
~Received 25 July 1997!

On the basis of physical considerations we propose a one-dimensional discrete lattice model for the density
relaxation of granular materials under tapping. Solving the difference equation numerically, we find a loga-
rithmic time dependence of the density relaxation. This is in agreement with experimental results of Knight
et al. @Phys. Rev. E51, 3957 ~1995!#. The origin of this anomalous relaxation is elucidated analytically by
solving the equation of its continuum version asymptotically in time.@S1063-651X~98!04501-2#

PACS number~s!: 81.05.Rm, 46.10.1z, 05.40.1j, 05.60.1w
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I. INTRODUCTION

The slow relaxation of density in granular materials und
tapping has attracted much theoretical interest recently@1–7#
since Knightet al. @8# carried out systematic experiment
measurements of density as a function of time for a vibra
granular material. The experimental data of Knightet al. @8#
can be most satisfactorily fitted using a functional form:

r~ t !5r`2
dr`

11G ln@11t/t#
, ~1!

wherer(t) is the average density in the system at time
stant t. Here r` , dr` , G, and t are constant parameter
This four-parameter fit was obtained from experimental d
without theoretical motivation. Previous theoretical mod
predicted different functional forms. In the model of Bark
and Mehta@9#, particles can relax both independently,
individual particles, and collectively, as clusters. Th
model leads to a sum of two exponential terms, which is
in accord with the logarithmic form of Eq.~1!. The model
proposed by Honget al. @10# is based on a diffusing void
picture. It predicts a power-law dependence of height red
tion as a function of time,dh;tz with z51, which means
that the density increases linearly until saturation.

Using frustrated Ising models, Herrmann and his colla
rators @1–4# gave a numerical confirmation of the logarit
mic density relaxation as Eq.~1! in their Monte Carlo simu-
lations. In their models, frustration plays a crucial role. Th
claim that frustration is generated in granular materials
the steric constraints imposed by the hard-core repulsio
neighboring grains and the subsequent interlocking. The
of the frustrated lattice gas models to real granular packin
explained in Refs.@1–4#.

In this paper we propose a one-dimensional discrete
tice model for granular compaction under tapping based o
simple physical picture. Numerical solutions to the mod
equation indicate that the density relaxes in a logarithm
manner, precisely as Eq.~1!. We also solve the continuum
version of the model analytically in the asymptotic lim
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(t→`) to confirm Eq.~1!. We note that relevant theorie
based on free volume exclusion were previously propose
Refs. @6, 7# trying to understand the logarithmic relaxatio
form. In their adsorption-desorption model, Ben-Naim
Knight, and Nowak@6# proposed an ordinary differentia
equation for the density relaxation which results in an
verse of logarithmic form.

This paper is organized as follows. Section II presents
model equation. Numerical and analytical solutions to
equation are given in Secs. III and IV, respectively. Sect
V is devoted to discussion.

II. MODEL EQUATION FOR DENSITY RELAXATION

The density of particlesr(r ,t) should satisfy the continu
ity equation:

]

]t
r~r ,t !1“•J50, ~2!

whereJ is the current density. We may rule out any simp
density-gradient term in the current density which leads
isotropic diffusion, since the thermal energy is too small
trigger the motion of grains. The current density may
written as a product of density and velocity:

J5r~r ,t !v. ~3!

To specify the functional form of velocity, let us consider
one-dimensional lattice model alongz direction. Gravity is
along the negativez axis. In the absence of tapping, motio
of grains under the action of gravity is possible only wh
the geometric constraint is satisfied, i.e., enough void sp
below the grain. Ifr(z,t) is the particle density, the void
density at the site just below is 12r(z21,t). Therefore the
velocity is nonzero only when the ratioa5r(z,t)/@12r(z
21,t)# is less than 1. This means a step function for t
velocity v:

v5 H 2v0 , a<1
0, a.1 ~4!

in the absence of tapping. The effect of tapping in granu
compaction is to overcome the bottleneck effect, i.e.,
make the geometric constraints not as strict as the ab
Motion of grains is also possible whena.1 with the help of

te
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830 57GONGWEN PENG AND TAKAO OHTA
tapping. We may therefore replace the above step func
with a peak function of an exponential form:

v52De2a/g, ~5!

whereg and D are constants dependent on the vibratio
intensityG5Av2/g with the amplitudeA and the frequency
v of oscillation andg the gravitational constant. The precis
G dependences ofD and g are beyond the scope of th
present theory. Substituting Eq.~5! and Eq.~3! into Eq. ~2!,
we obtain our model equation for density relaxation:

]

]t
r~z,t !5D

]

]z
F~z,t !, ~6!

with

F~z,t !5r~z,t !expS 2
r~z,t !

g@12r~z2j,t !# D , ~7!

wherej is infinitesimal in the continuum limit. This model i
defined more definitely on a lattice:

]r~z,t !

]t
5D@F~z11,t !2F~z,t !#, ~8!

whereF(z,t) is given by Eq.~7! settingj51.

III. NUMERICAL SOLUTIONS

In order to solve numerically Eq.~6!, we supply two fixed
boundary conditions,r(0,t)51 at the bottom andr(L
11,t)50 at the top of the system. The following discre
version of Eq.~8! ensures no flux at the boundaries, i.
conservation of particle density as a whole is ensured at e
time step:

r~z,t11!5r~z,t !1D@F~z11,t !2F~z,t !#, ~9!

with F(z,t) given by Eq.~7! with j51.
We update$r(z,t), z51,2,...,L% according to Eq.~9! from

random initial conditions with$r(z,0), z51,2,...,L% equal to
random numbers distributed uniformly fromr l to ru . Figure
1 shows snapshots of density profiles at three different t
steps. We see that as particles move downward voids m
upward and pile at the top. As soon as we start updating f
a random initial configuration, a sharp interface betwee
particle phase and a void phase begins to emerge. Its pos
can be easily identified as the location where density chan
sharply from nonzero value to zero. Since the position of
interface takes only integer values on the lattice and in
mation extracted from it is therefore limited, we resort
calculating the position of center of mass,

H~ t !5E
1

L

zr~z,t !dz5(
z51

L

zr~z,t !. ~10!

We take it for granted that the average density measure
experiments is proportional to the inverse ofH(t). We de-
termine the proportional prefactor as follows. The minimu
value ofH can be obtained from a density distribution of
step function, i.e.,
n
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r~z,t !5 H1, z<B
0, z.B ~11!

which is actually a static solution to the model equation E
~9!. HereB is determined by the density conservation and
a time-independent quantity:B5*1

Lr(z,t)dz. The value of
H corresponding to Eq.~11! is 1

2 B2. We therefore use the
following expression for the average density:

r~ t !5
B2

2H~ t !
. ~12!

FIG. 1. Snapshots of density distribution for three different tim
steps for system withL51024,g51, andD51. ~a! At t50, the
density is randomly distributed with a mean value of 0.50.~b! At
t51136 when the density jump is about 0.8 at the interface betwe
the particle phase and the void phase.~c! At t51 024 000 density
distribution is very weakly dependent on position in the partic
phase.
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57 831LOGARITHMIC DENSITY RELAXATION I N . . .
Starting from random initial configurations, we disca
the data for initial transient time period and do not ma
computation ofr(t) until at the interface between the pa
ticle phase and the void phase the density jumps from zer
some reasonably finite value. Our density of unity cor
sponds to the densest close packing and it sets the sca
density. For the case of spherical particles in reality,
densest close packing has a density of about 0.64 while
mechanically least stable configurations have the most lo
value of about 0.55@11# ~in our scale 0.859!. Figure 2 shows
one typical plot ofr(t) calculated from the lattice mode
The time step when we start calculatingr(t) in Fig. 2 is set
to be the time origin. It is the instant when the density gap
the interface is about 0.8 in our density scale. The numer
data in Fig. 2 can be very well fitted by the logarithmic for
of Eq. ~1!, which is also shown in the figure.

Figure 3 displays two density profiles at different tim
steps for the particle phase while zero density in the v
phase is not plotted. We find that the density profile can
fitted by the expression

rp~z,t !5r1~ t !2s~ t !@ ln~z!#b~ t !, ~13!

wherer1(t), s(t), andb(t) are time-dependent paramete
The fit to the numerical data is also plotted in Fig. 3. In t
whole range the density is step-function-like,

FIG. 2. Time dependence of the average density. Heret50 is
shifted to the time instant when the calculation ofr(t) starts. Data
points are numerical results from the one-dimensional lattice mo
with L51024,g51, andD51. Best fit using Eq.~1! is also plotted
~curve! with fitting parametersr`50.989 749,dr`50.150 325,
G50.230 741,t5806.443. The agreement is remarkable.
to
-
for
e
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se
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r~z,t !5 H rp~z,t !, z<b~ t !
0, z.b~ t ! ~14!

whereb(t) is the location of the interface.
Equation ~14! is different from the generalized Ferm

Dirac distribution proposed by Hayakawa and Hong@12# and
found by Herrmann and his collaborators in simulations
frustrated Ising models@3,4#. The generalized Fermi-Dirac
distribution does not have a singularity in the density pro
but changes continuously from larger values to zero rap
within a boundary layer whose width is determined by one
the parameters in the distribution. On the other hand,
model gives a sharp interface between the particle phase
the void phase and therefore the model does not permit
density value smaller than the most loose density for gra
lar compaction. In this sense, we may say that in addition
the granular solid phase and the void phase the genera
Fermi-Dirac distribution allows a granulargas phase where
density changes drastically@12,3,4#. Our model describes
only the granular compaction under tapping where the gra
do not fly as in a gas@and therefore no inertia terms appear
the velocity expression Eq.~5!#.

IV. ANALYTICAL SOLUTION
IN THE ASYMPTOTIC LIMIT

As we observed in the simulations, there is always a sh
interface between the particle phase and the void phase

el

FIG. 3. Density profiles~data points! at two different time steps
t510 240~lower! ~starting from a random initial configuration! and
t5102 400 ~upper! obtained from the one-dimensional lattic
model with L51024, g51.8, D51. Best fits using Eq.~13! are
also shown ~curves! with fitting parametersr150.960 768, s
55.350 8331024, b52.151 45 for t510 240, and r1

50.967 761,s55.991 4131024, b51.8166 fort5102 400.
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832 57GONGWEN PENG AND TAKAO OHTA
may therefore generally postulate the solution to Eq.~6! as

r~z,t !5a~z,t !Q„b~ t !2z…, ~15!

where Q(x) is the step function such thatQ(x)50 for x
<0 andQ(x)51 for x.0. We now determine the time de
pendence of the location of the interfaceb(t) by solving the
equation in its continuum version, Eq.~6!. Substituting Eq.
~15! into the left hand side of Eq.~6!, we obtain

]r

]t
5ȧ~z,t !Q„b~ t !2z…1a~z,t !ḃ~ t !d„b~ t !2z…, ~16!

where dot stands for time derivative. TheQ function in Eq.
~15! gives us the followingF(z,t) in Eq. ~7!:

F~z,t !5a~z,t !Q„b~ t !2z…e2a~z,t !/$g@12a2~z,t !#% ~17!

5 f „a~z,t !,a2~z,t !…Q„b~ t !2z…, ~18!

wherea2(z,t) stands for the value ofa just belowz, i.e.,
a(z2j,t) with infinitesimalj. Here

f „a~z,t !,a2~z,t !…[a~z,t !e2a~z,t !/$g@12a2~z,t !#%. ~19!

Thus the right-hand side of Eq.~6! reads

D
]F~z,t !

]z
5D

] f

]z
Q„b~ t !2z…2D f d„b~ t !2z…. ~20!

Integrating the right-hand sides of Eq.~16! and of Eq.~20!
from z5b(t)2D to z5b(t)1D and taking the limit of
D→0, we obtain

a~z,t !ḃ~ t !uz5b~ t !52Da~z,t !e2a~z,t !/$g@12a2~z,t !#%uz5b~ t ! .

~21!

Now we make an approximation. From the simulatio
we know thata(z,t) depends onz very weakly. The param-
eter b(t) in Eq. ~13! decreases as time increases. Wh
t→`, b→0. We therefore make the following assumptio
in the asymptotic limit oft→`:

a~z,t !5a~ t !. ~22!

The conservation of total density is then expressed as

a~ t !b~ t !5B, ~23!

with the sameB as in Eq.~11!.
Using Eq.~21!, Eq. ~22!, and Eq.~23! we have

Bȧ5Da2e2a/g~12a!. ~24!

Letting a512e leads in the asymptotic limit (e→0),

ė52ce21/ge, ~25!

wherec5De1/g/B is constant. Settingx51/e, we have

ẋ5cx2e2x/g. ~26!
s

n

Now we integrate Eq.~26! for t from 0 to t and forx from
1/(12r0) to 1/(12r) wherer0 andr are the average den
sity @i.e., a(t)# of the particle phase at time 0 andt, respec-
tively,

E
1/~12r0!

1/~12r!

x22ex/gdx5cE
0

t

dt. ~27!

The asymptotic solution of Eq.~27! is readily obtained by
using the formula

Ei~2x!52E
x

` e2y

y
dy ~28!

and the expansion forx@1

Ei~2x!5e2xF2
1

x
1

1

x2 1OS 1

x3D G . ~29!

The final form for Eq.~27! is given by

g~12r!2e1/@g~12r!#5ct1d, ~30!

with d5g(12r0)2e1/@g(12r0)#. This can be rewritten as

ln g12 ln~12r!1
1

g~12r!
5 ln~ct1d!, ~31!

where, however, the first two terms are negligible compa
with the third one for the left side, so that we obtain the fin
form of the average density

r~ t !512
1/g ln~d!

11@1/ln~d!# ln~11ct/d!
. ~32!

This is precisely the same form as Eq.~1!. The form of Eq.
~32! perfectly agrees with the simulations as shown in Fig

V. DISCUSSION

We have shown that the discrete lattice model Eq.~8!
exhibits an anomalously slow density relaxation. Althou
our model is quite simple, it contains essential features
granular materials that granular particles can move o
when there is enough void below the particle. Tapping
system weakens this constraint and we have taken into
count this property by assuming the velocity as Eq.~5!. In
this way, the logarithmic time dependence has been
tained, which is consistent with experiments. To our know
edge, no model equation in terms of space-time coordina
which produces a logarithmic relaxation, has been availa
so far in granular systems.

The analytical study indicates that the logarithmic rela
ation originates from the factor exp$2r(z)/@12r(z21)#% in
the velocity Eq.~5!. Whenr(z)'r(z21)'1, the velocity
becomes extremely small whereas it is finite whenr(z)'0.
Thus we expect that the logarithmic relaxation occurs as
as the system possesses this property independent of th
tailed form of the velocity. Actually, we have confirmed b
simulations that the velocity such asv5D/(11e(a21)/g)



o
ni
e-
m
rit

f
iates
So-

57 833LOGARITHMIC DENSITY RELAXATION I N . . .
leads to the essentially same relaxation and the existence
sharp interface in the density profile. This fact implies a u
versal feature of the logarithmic relaxation not only r
stricted to granular materials but also for other syste
where velocity vanishes abruptly like an essential singula
when the density exceeds some threshold value.
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