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Logarithmic density relaxation in compaction of granular materials
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On the basis of physical considerations we propose a one-dimensional discrete lattice model for the density
relaxation of granular materials under tapping. Solving the difference equation numerically, we find a loga-
rithmic time dependence of the density relaxation. This is in agreement with experimental results of Knight
et al. [Phys. Rev. B51, 3957(1995]. The origin of this anomalous relaxation is elucidated analytically by
solving the equation of its continuum version asymptotically in tif$4.063-651X98)04501-3

PACS numbegps): 81.05.Rm, 46.10-z, 05.40+j, 05.60+w

I. INTRODUCTION (t—x) to confirm Eqg.(1). We note that relevant theories
based on free volume exclusion were previously proposed in
The slow relaxation of density in granular materials underRefs.[6, 7] trying to understand the logarithmic relaxation
tapping has attracted much theoretical interest recébtly]  form. In their adsorption-desorption model, Ben-Naim,
since Knightet al. [8] carried out systematic experimental Knight, and Nowak[6] proposed an ordinary differential
measurements of density as a function of time for a vibrateegquation for the density relaxation which results in an in-
granular material. The experimental data of Knightal.[8]  verse of logarithmic form.

can be most satisfactorily fitted using a functional form: This paper is organized as follows. Section Il presents the
model equation. Numerical and analytical solutions to the
6o equation are given in Secs. lll and 1V, respectively. Section

pP()=p== 775 In[1+t/7]’ (1) v is devoted to discussion.

wherep(t) is the average density in the system at time in- II. MODEL EQUATION FOR DENSITY RELAXATION
stantt. Herep., 8p.., G, and 7 are constant parameters. . ) ) .
This four-parameter fit was obtained from experimental data 11'€ density of particlep(r,t) should satisfy the continu-
without theoretical motivation. Previous theoretical modelgty eguation:

predicted different functional forms. In the model of Barker P

and Mehta[9], particles can relax both independently, as — p(r,t)+V-J=0, )
individual particles, and collectively, as clusters. Their at

model leads to a sum of two exponential terms, which is no%/vhere‘] is the current density. We mav rule out anv simple
in accord with the logarithmic form of Eq1). The model Y. Y y P

proposed by Hongt al. [10] is based on a diffusing void density-gradient term in the current density which leads to

picture. It predicts a power-law dependence of height reduc|_sotrop|c diffusion, since the thermal energy is too small to

tion as a function of timegh~t* with z=1, which means trigger the motion of grains_. The currer)t _density may be
that the density increases linearly until saturation. written as a product of density and velocity:

Using frustrated Ising models, Herrmann and his collabo- J=p(r,H)V. 3)
rators[1-4] gave a numerical confirmation of the logarith-
mic density relaxation as E@1) in their Monte Carlo simu-  To specify the functional form of velocity, let us consider a
lations. In their models, frustration plays a crucial role. Theyone-dimensional lattice model alormdirection. Gravity is
claim that frustration is generated in granular materials byalong the negative axis. In the absence of tapping, motion
the steric constraints imposed by the hard-core repulsion aff grains under the action of gravity is possible only when
neighboring grains and the subsequent interlocking. The linkhe geometric constraint is satisfied, i.e., enough void space
of the frustrated lattice gas models to real granular packing ielow the grain. Ifp(z,t) is the particle density, the void
explained in Refs[1-4]. density at the site just below is-dp(z—1). Therefore the

In this paper we propose a one-dimensional discrete latge|ocity is nonzero only when the ratie= p(z,t)/[1— p(z
tice model for granular compaction under tapping based on a1 t)] is less than 1. This means a step function for the
simple physical picture. Numerical solutions to the modelye|ocity v:
equation indicate that the density relaxes in a logarithmic
manner, precisely as E¢l). We also solve the continuum —vg, a<l1
version of the model analytically in the asymptotic limit 7o, a>1 4)

in the absence of tapping. The effect of tapping in granular
*Present address: Department of Physics, Bowling Green Statgompaction is to overcome the bottleneck effect, i.e., to
University, Bowling Green, OH 43403. make the geometric constraints not as strict as the above.
Electronic address: ohta@phys.ocha.ac.jp Motion of grains is also possible whern>1 with the help of
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tapping. We may therefore replace the above step functio 1 : : : : .
with a peak function of an exponential form: (a)
v:_Defa/'y, (5) 0.8 | i

where y and D are constants dependent on the vibrational 06 1
intensityl’ = Aw?/g with the amplitudeA and the frequency p(z) W
o of oscillation andg the gravitational constant. The precise 04
I' dependences ob and y are beyond the scope of the
present theory. Substituting E¢p) and Eq.(3) into Eqg.(2), 0z ‘

we obtain our model equation for density relaxation:

9 J 0 200 400 600 800 1000
Ep(z,t)ZD = F(z1), (6) z

with \Wﬂ (k) |

F(z,t)=p(zt ;](—L 7
(2O=P DS =S =201 oo ‘

whereé is infinitesimal in the continuum limit. This model is 04 7
defined more definitely on a lattice:

0.2 - -

dp(z,t)
ot

=D[F(z+1t)—F(z1)], (8

0 200 400 600 800 1000

whereF(z,t) is given by Eq.(7) settingé=1. z

IIl. NUMERICAL SOLUTIONS (c)

In order to solve numerically E@6), we supply two fixed T |

boundary conditions,p(0t)=1 at the bottom ando(L
+1t)=0 at the top of the system. The following discrete o(2)
version of Eq.(8) ensures no flux at the boundaries, i.e.,
conservation of particle density as a whole is ensured at eac
time step:

04 1

p(z,t+1)=p(z,t)+D[F(z+1}t)—F(z1)], 9

0 200 400 600 800 1000

with F(z,t) given by Eq.(7) with ¢=1.
We updatgp(z,t), z=1,2,...L.} according to Eq(9) from z
random initial conditions witHp(z,0), z=1,2,...L} equal to
random numbers distributed uniformly froppto p,,. Figure teps for system with — 1024, y—1, andD 1. (a) At t=0, the

1 shows snapshots of density profiles at three different tim(cgiensity is randomly distributed with a mean value of 0.81).At

steps. We see that as particles move downward voids move: 1136 when the density jump is about 0.8 at the interface between

upward and pile at the top. As soon as we start updating fror[he particle phase and the void pha&®.At t=1 024 000 density

a rapdom initial Conﬁgwation’ a shgrp interface betweer_],%istribution is very weakly dependent on position in the particle
particle phase and a void phase begins to emerge. Its po&h%ase

can be easily identified as the location where density changes

sharply from nonzero value to zero. Since the position of the

interface takes only integer values on the lattice and infor- o(z,t) = 1, z<B (11)
mation extracted from it is therefore limited, we resort to ' 0, z>B

calculating the position of center of mass,

FIG. 1. Snapshots of density distribution for three different time

L L which is actually a static solution to the model equation Eq.
H(t)=J' zp(z,t)dz= >, zp(zt). (10  (9). HereB is determined by the density conservation and is
1 z=1 a time-independent quantit)B=f'ip(z,t)dz. The value of

_ ) H corresponding to Eq(11) is $B. We therefore use the
We take it for granted that the average density measured igpllowing expression for the average density:

experiments is proportional to the inversetbft). We de-
termine the proportional prefactor as follows. The minimum
value ofH can be obtained from a density distribution of a
step function, i.e.,

BZ

2H(t) "

p(t)= (12
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FIG. 2. Time dependence of the average density. Here is FIG. 3. Density profilegdata points at two different time steps
shifted to the time instant when the calculationpgt) starts. Data  t=10 240(lower) (starting from a random initial configuratipand
points are numerical results from the one-dimensional lattice moddi=102 400 (uppe) obtained from the one-dimensional lattice
with L=1024,y=1, andD = 1. Best fit using Eq(1) is also plotted = model with L=1024, y=1.8, D=1. Best fits using Eq(13) are
(curve with fitting parametersp..=0.989 749, 6p,,=0.150 325, also shown (curveg with fitting parametersp;=0.960 768, s
G=0.230 741,7=806.443. The agreement is remarkable. =5.35083« 104, ~B=2.15145 for t=10240, and p,

=0.967 761,5=5.991 41X 10~ %, B=1.8166 fort=102 400.

Starting from random initial configurations, we discard po(zt), z<b(t)
the data for initial transient time period and do not make p(z,t)= Op 7>D(t)
computation ofp(t) until at the interface between the par- '
ticle phase and the void phase the density jumps from zero twhereb(t) is the location of the interface.
some reasonably finite value. Our density of unity corre- Equation (14) is different from the generalized Fermi-
sponds to the densest close packing and it sets the scale irac distribution proposed by Hayakawa and Hohg] and
density. For the case of spherical particles in reality, théound by Herrmann and his collaborators in simulations of
densest close packing has a density of about 0.64 while thigustrated Ising model§3,4]. The generalized Fermi-Dirac
mechanically least stable configurations have the most loosdistribution does not have a singularity in the density profile
value of about 0.5511] (in our scale 0.8509 Figure 2 shows but changes continuously from larger values to zero rapidly
one typical plot ofp(t) calculated from the lattice model. within a boundary layer whose width is determined by one of
The time step when we start calculatip¢t) in Fig. 2 is set the parameters in the distribution. On the other hand, our
to be the time origin. It is the instant when the density gap amodel gives a sharp interface between the particle phase and
the interface is about 0.8 in our density scale. The numericahe void phase and therefore the model does not permit any
data in Fig. 2 can be very well fitted by the logarithmic form density value smaller than the most loose density for granu-
of Eq. (1), which is also shown in the figure. lar compaction. In this sense, we may say that in addition to

Figure 3 displays two density profiles at different time the granular solid phase and the void phase the generalized
steps for the particle phase while zero density in the void-ermi-Dirac distribution allows a granulgas phase where
phase is not plotted. We find that the density profile can bélensity changes drasticallji2,3,4. Our model describes
fitted by the expression only the granular compaction under tapping where the grains

do not fly as in a gakand therefore no inertia terms appear in
the velocity expression E@5)].

(14

pp(z,t)=p1(t) —s(H)[In(2)]7", (13
IV. ANALYTICAL SOLUTION

. IN THE ASYMPTOTIC LIMIT
wherep,(t), s(t), and3(t) are time-dependent parameters.

The fit to the numerical data is also plotted in Fig. 3. In the As we observed in the simulations, there is always a sharp
whole range the density is step-function-like, interface between the particle phase and the void phase. We
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may therefore generally postulate the solution to @&g.as

p(zt)=a(z,1)0(b(t)-2), (15
where ®(x) is the step function such th& (x)=0 for x
<0 and®(x)=1 for x>0. We now determine the time de-
pendence of the location of the interfde@) by solving the
equation in its continuum version, E(). Substituting Eq.
(15) into the left hand side of Eq6), we obtain

dp

S =azne bt -2+ a(z,H)b(t)8(b(t)—2), (16)

where dot stands for time derivative. Tkefunction in Eq.

(15) gives us the followind=(z,t) in Eq. (7):
F(zt)=a(zt)0(b(t)—z)e” azV/iMI-a-@vl (17

=f(a(z,t),a_(z,1)0(b(t) - 2), (18)

wherea_(z,t) stands for the value od just belowz, i.e.,
a(z— &,t) with infinitesimal & Here

f(a(zt),a_(z,t))=a(z,t)e 2@V/1-a-@vl (19
Thus the right-hand side of E¢) reads

dF(z,t)
0z

=D Z—; O(b(t)—2z)—DFfs(b(t)—2). (20)

Integrating the right-hand sides of E{.6) and of Eq.(20)
from z=b(t)—A to z=b(t)+A and taking the limit of
A—0, we obtain

a(z,t)b(t)] =)= —Da(z,t)e a@VOM-a-@OL|
(21
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Now we integrate Eq26) for t from 0 tot and forx from
1/(1—pg) to 1/(1—p) wherepy andp are the average den-
sity [i.e., a(t)] of the particle phase at time 0 andrespec-
tively,

1(1—-p) 2 gy t
x~“e¥vdx=c | dt. (27)
0

(1~ pg)

The asymptotic solution of Eq27) is readily obtained by
using the formula

o efy
Ei(—x)=—f —dy (28
x Y
and the expansion for>1
Ei =e X 1+ ! +0 ! 29
i(—x)=e7 =~ +5+0| 5| |. (29
The final form for Eq.(27) is given by
y(1—p)2erd-rl=ct+d, (30

with d= y(1— p)?e*?(1=rd)l  This can be rewritten as

=In(ct+d), (3D

1
In y+2In(l—p)+ —————
Y (1—p) Y1=p)

where, however, the first two terms are negligible compared
with the third one for the left side, so that we obtain the final
form of the average density

B 1/y In(d)
PO= 1 () TIn(L+ ot d)

(32

This is precisely the same form as Ed). The form of Eq.

Now we make an approximation. From the simulations(32) perfectly agrees with the simulations as shown in Fig. 2.

we know thata(z,t) depends oz very weakly. The param-

eter B(t) in Eqg. (13) decreases as time increases. When
t—owo, B—0. We therefore make the following assumption

in the asymptotic limit oft—oo:
a(z,t)=a(t). (22

The conservation of total density is then expressed as

a(t)b(t)=B, (23
with the sameB as in Eq.(11).
Using Eq.(21), Eq. (22), and Eq.(23) we have
Ba=Da%e ¥r1~3), (29
Letting a=1— € leads in the asymptotic limite—0),
e=—ce Yre, (25)

wherec=De'?/B is constant. Setting=1/e, we have

x=cx?e X7, (26)

V. DISCUSSION

We have shown that the discrete lattice model B).
exhibits an anomalously slow density relaxation. Although
our model is quite simple, it contains essential features of
granular materials that granular particles can move only
when there is enough void below the particle. Tapping the
system weakens this constraint and we have taken into ac-
count this property by assuming the velocity as E5). In
this way, the logarithmic time dependence has been ob-
tained, which is consistent with experiments. To our knowl-
edge, no model equation in terms of space-time coordinates,
which produces a logarithmic relaxation, has been available
so far in granular systems.

The analytical study indicates that the logarithmic relax-
ation originates from the factor ekpp(2)/[1—p(z—1)]} in
the velocity Eq.(5). Whenp(z)~p(z—1)~1, the velocity
becomes extremely small whereas it is finite widr)~0.
Thus we expect that the logarithmic relaxation occurs as far
as the system possesses this property independent of the de-
tailed form of the velocity. Actually, we have confirmed by
simulations that the velocity such as=D/(1+el*~ 1)
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